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AVAILABILITY COST OPTIMIZATION METHODOLOGY DESCRIPTION 
STEVE HALL 

ASSET OPTIMIZATION SERVICES 
 

Life Cycle Cost Optimization Process1 
  
Availability and efficiency improvements at power plants can be achieved at the unit level by selectively 
improving component reliability, maintainability, or efficiency.  However, implementation of a specific 
availability or efficiency improvement or series of improvements may not prove to be cost effective because 
the gain expected from implementing the improvement is less than the cost of the improvement or because 
of the imposition of outside constraints such as scheduled outage time and funding limits.  The objective of 
the life cycle cost optimization process is to select those component improvements that will provide an 
increase in availability or efficiency and also reflect the greatest net benefit within imposed resource 
constraints (funding, schedule, manpower). 
 
The improvement life cycle cost optimization process employs a four-step iterative approach as illustrated in 
Figure 1.  The first step is to collect the information and data related to the improvements under evaluation.  
The second step is to apply an economic screening criteria and method to determine which improvement 
options are potentially cost beneficial. The third step considers various constraints such as funding 
limitations, outage schedules, and manpower limitations to further evaluate the candidate improvements. 
The final step of the approach is to evaluate surviving candidate improvements through a dynamic program 
algorithm to arrive at a sequence of improvements that provide the greatest net benefit within established 
constraints. 
 
DATA COLLECTION 
 
In order to implement the life cycle cost optimization process it is necessary to establish a relationship 
between the cost of implementing an improvement and the expected benefit of that improvement.  That 
relationship is established by determining the cost of the improvement, estimating the expected increase in 
component availability resulting from that improvement, calculating the effect of the component availability 
change on overall unit equivalent availability or capacity factor and converting the change in unit equivalent 
availability into a benefit based on an increase in net generation revenue.  To accomplish that, the following 
information is required: 
 

• A listing of the reliability, availability, maintainability (RAM), and efficiency improvement options 
under consideration 

• The cost required to implement each improvement option 
• The time required to implement each change 
• For RAM improvements, the actual or estimated change in event frequency and/or downtime 

resulting from each improvement option 
• For efficiency improvements, the expected percent increase in net revenue from either decreasing 

the fuel cost or in increasing net generation capability. 
• An LCC simulation model and associated baseline data for the plant (or plants) to be evaluated 
• The cost relationships between unit availability and costs such as replacement power, fuel, and 

operations and maintenance expenditures 
 

                                                 
1 The information in this paper is based on work the author undertook in relation to developing a solution for 
EPRI in 1989 that used the UNIRAM RAM modeling methodology.  The processes described herein are in 
the public domain. 
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Figure 1.  Availability Optimization Process 
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• Identification of funding, schedule, or other resource constraints 
• Economic factors such as escalation, discount, and interest rates 
• Unit production demand parameters (e.g., baseload, cycling, peaking) 

The LCC simulation model is used to assess changes in unit availability that may occur due to changes in 
component RAM characteristics so that the relationship between availability and production costs can be 
studied quickly and accurately.  The need for information relating to constraints is required because the cost 
optimization methodology must be responsive to the possibility of limited capital, outage time, or the labor 
and engineering resources available for implementing improvements.  This is especially true for 
improvement projects that must compete for funding.  
 
ECONOMIC SCREENING ANALYSIS 
  
An economic screening analysis is used to identify those candidate improvement options that have the 
potential for producing a positive net benefit.  This initial economic screening assumes that the proposed 
improvements are independent.  Before beginning this analysis, a LCC simulation is performed for the plant 
(or plants) to evaluate the effect that changes in component availability have on unit production.  The output 
of the LCC simulation is a criticality ranking (Ci).  This ranking indicates, for each component or event, the 
increase in unit productivity to be expected if that component were to achieve “perfect” availability, i.e., its 
availability becomes 1.  The forecasted change in component availability for a given proposed improvement 
(∆Ac) is then multiplied by he component’s criticality ranking (Ci x ∆Ac) to calculate the approximate change 
in unit availability that can be expected from implementing that change.  This initial screening relies on the 
assumption that the relation ship between component and unit availability is linear.   As Figure 2 illustrates, 
this relationship is typically non-linear.  However, the relationship can be linearly approximated for small 
changes in component availability.   For each proposed RAM improvement, the expected increase in unit 
production is then used to estimate the increase in annual megawatt hours that may be expected from a 
specific component improvement.  To calculate the change in expected megawatt hours (�MW-HR), the 
following equation is used: 
 
�MW-HR = �Au x (Unit Net Capacity) x (Scheduled Operating Hours)                             (1) 
 
The increase in power production can then be converted to an expected revenue increase and compared to 
the cost of making the component improvement. 
  

• Improvements proposed for increasing efficiency would be economically screened as follows: 
 
If the proposed change results in an increase in net capacity, the benefit would be calculated using 
the following equation: 

 
�MW-HR = Au x ∆(Unit Net Capacity) x (Scheduled Operating Hours)                         (2) 

As before, the increase in power production can then be converted to an expected revenue increase 
compared to the cost of making the component improvement. 

• If the proposed change resulted in lowering fuel costs, i.e., less fuel is required to generate the same 
amount of power the following equation would be used to calculate the expected benefit: 

Benefit = MW-HR's x ∆(Cost/MW-HR)                    (3) 
Where MW-HR's = Au x (Unit Capacity) x (Scheduled Operating Hours) 

 
Should there be other cost factors affected by changes in unit productivity, these too can be estimated in a 
similar manner.  Those component improvements that would provide a cost savings greater than the 
investment cost then become potential economically viable improvement candidates because, as we will 
see later, they maybe dropped from consideration for other reasons.  If so desired, the present worth of the 
costs and benefits can be used in the economic screening process to account for the time value of money 
over the life of the change. 
 
It is recognized that depreciation and tax effects could also be added to the economic screening model, as 
can O&M costs.  Although these are second order effects they can be included should these factors be 
significant. 
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Figure 2.  Component/Unit Availability Relationship 

 
The output of the economic screening process is a list of potential economically viable improvement 
projects. These projects, with their costs and benefits, are then analyzed considering additional constraints 
(e.g., minimum cost-benefit ratio, must do for regulatory reasons, negative impact on safety, etc.) that may 
be desired.  
 
OPTIMIZATION WITH CONSTRAINT 
 
The third step of the analysis considers any stated constraints on the improvement process such as funding 
limitations or manpower resources.   If there are no constraints, or the constraints are not exceeded, the 
optimization process can proceed to the optimal solution process.  If the limitations of any constraints are 
not satisfied, an integer program (IP) algorithm is applied to the economically screened candidate 
improvement options prior to last step. The objective of the IP algorithm step is to choose the combination of 
improvements that provide the optimum benefit while satisfying the limitations of each constraint. An 
example of the IP process is contained in Appendix A.  The IP step assumes that the benefit resulting from 
each specific improvement will not affect the benefit of other improvements and that the total benefit is the 
sum of each individual benefit.                                                . 
 
The result of using the IP is a list of candidate component improvements that maximize the net benefits and 
meet the imposed constraints.  If the assumption of independence and linearity reflected the actual 
relationship between component and unit availability, the IP would provide the final optimum set of 
improvements.  However, as seen in Figure 2, the relationship between component availability and unit 
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availability is often non-linear and experience with LCC simulation models has shown that component 
improvement effects are not independent. 
 
OPTIMAL SOLUTION PROCESS 
 
The final step in the optimization process is to apply a dynamic programming (DP) algorithm to the set of 
candidate improvement options. The objective of the DP algorithm is to optimize the solution set taking into 
account any non-linearities that exists between component and unit availability and any interdependency 
that can exist between components. This is done by making a sequence of selections such that if the 
process were prematurely terminated, the changes selected to that point would still be optimal. 
 
As each component improvement is selected and the baseline design of the unit is changed (via the LCC 
model), it can be expected that the ratio of changes in unit availability to changes in component availability 
of the unmodified components will either increase, decrease, or remain the same.  Because of these 
changes, it is possible that some component improvements that were previously not cost beneficial will 
become beneficial.  Conversely, it is also possible that some improvements will no longer be beneficial.  The 
unpredictable effect of changes on component criticalities (Ci) is investigated using the DP algorithm.  An 
example of this algorithm is contained in Appendix B.  Note that this DP algorithm is dependent on the same 
constraints imposed by the IP algorithm. 
 
The DP algorithm is a process that methodically addresses the expected benefit of implementing alternative 
sets of improvement candidates to ascertain the set that will provide the greatest net benefit.  As each 
improvement candidate is implemented and the baseline design of the unit is changed (via the LCC model), 
the economic screening and imposition of constraints processes are again done on an iterative basis.  The 
economic screening is accomplished with the new baseline design; the imposition of constraints is 
accomplished with a reduction in the constraint equal to the cost of the candidate improvement(s) 
implemented. 
 
The result of these optimal analyses is a chronologically ordered list of recommended improvements that 
should provide maximum return on an improvement investment considering all constraints. 
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Illustration of Integer Programming (IP) Algorithm2 
 
In order to illustrate the application of the Integer Programming (IP) algorithm, it is assumed that a life cycle 
cost model (LCCM) has established a set of seven economically viable component improvement options 
and their associated estimated expected benefits (∆Bi) and implementation (ICi) cost values.  These are 
summarized in Table A-1.  It is further assumed there exists a cost constraint of $1,000,000.  The problem is 
then: 
 

Maximize:  i

7

1i
i XB�

=

∆                        (A-1) 

 

Subject to:      000,000,1XIC i

7

1i
i <�

=

                            (A-2) 

            Xi = 0,1 
 
 

Alternative Estimated NPW 
Benefit (∆∆∆∆Bi) 

Implementation 
Cost (ICi) 

   
X1 $157,000 $151,000 
X2 $640,000 $362,000 
X3 $207,000 $477,000 
X4 $273,000 $100,000 
X5 $95,900 $230,000 
X6 $17,100 $$37,000 
X7 $148,000 $959,000 
  $2,316,900 

 
Table A-1.  Sample Problem Data 

 
The first step in implementing the solution is to order the alternatives in order of decreasing benefit.  For this 
example the ordered set is: 

X2, X4, X3, X1, X7, X5, X6 

The operation of the algorithm for this example is summarized in Table A-2.  The placing of a one (1) directly 
below a variable in the ordered set signifies the consideration of those variables for a potential solution.  
Each consideration is called an iteration and is one horizontal line in the algorithm solution.  As an additional 
variable is considered in a subsequent iteration, it will be the next “leg” and will be indicated in the next 
vertical column.  A leg begins what will be a path of possible combination of variables.  The objective of the 
algorithm is to efficiently search the solution tree for the optimum solution,  eliminating legs such that all 
possible combinations that will not result in an optimal solution will not have to be evaluated. 
 
The constraint value (CT) is the total cost of implementing the combination of variables of a given iteration.  
The maximum value (V) is the absolute best possible value if the indicated variable is implemented and 
assuming all the benefits from other legs that are not specified by a 1 or 0 are obtained.  For example, in 
iteration 1 (in which variable X2 is considered as a potential solution) the calculation assumes the benefits 
from all the alternatives in addition to X2, thereby considering the best possible outcome from selecting X2 as 
the root of a leg.  The sum of the benefits from all alternatives in the sample problem data is $158,000, 
which is entered into the minimum value column. 
 
 
 

                                                 
2 Egon Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables, Operations 
Research, 13(4): 517-546, July –August, 1965 
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Iteration  

No. 
Variable 

X2X4X3X1X7X5 X6 

Constraint 
Value (CT) 

Maximum 
Value (V) 

Stored 
Solution (VS) 

Eliminated? 
Yes or No 

Reason 
1,2, or 3 

       
1  1    $362,000 $1,538,000 0 No  
2  1  1  $462,000 $1,538,000 0 No  
3  1  1  1  $939,000 $1,538,000 0 No  
4  1  1  1  1   $1,090,000  $1,538,000 0 Yes 1 
5  1  1  1  0 1  $1,898,000 $1,381,000 0 Yes 1 
6  1  1  1  0  0  1 $1,169,000 $1,233,000 0 Yes 1 
7  1  1  1  0  0  0  1 $976,900 $1,137,100 0 Yes 3 
8*  1  1  0  1  0  1  1 $880,000 $1,183,000 $1,137,100 Yes 3 
9  1  0  1 $569,000 $1,265,000 $1,183,000 No  
10  1  0  1  1 $720,900 $1,265,000 $1,183,000 No  
11  1  0  1  1  1 $1,679,000 $1,265,000 $1,183,000 Yes 1 
12  1  0  1  1  0  1 $950,000 $1,170,000 $1,183,000 Yes 2 
13  1  0  1  0  1 $1,798,000 $1,108,000 $1,183,000 Yes 1,2 
14  1  0  0  1 $513.000 $1,158,000 $1,183,000 Yes 2 
15  0  1 100,000 $898,000 $1,183,000 Yes 2 

*Solution 

Table A-2.  Algorithm Solution 
 
To begin the operation, an initial stored solution is assumed (0 in this case since all alternatives are required 
to be positive).  The decision tree is then explored and, at each iteration, either a leg is eliminated or no 
decision is obtained.  If a leg is eliminated it is removed from further consideration.  A leg will be eliminated if 
any of the following conditions is met: 

1. The cost total (CT) with the next leg will exceed the maximum cost constraint. 
2. The next leg and the maximum contribution of the remaining legs are not as beneficial as the last 

stored solution (VS). 
3. The next leg is the last leg and creates an improved solution (V).   (Note:  This improved solution 

then becomes the new stored solution (VS). 
 
In iteration 1, none of the criteria for eliminating a leg are met because the cost of implementing X2 is 
$362,000 against a constraint of $1,000,000 and the stored solution is 0.  Therefore no decision is 
obtained in iteration 1.  However in iteration 4, in which the total cost ($1,090,000) exceeds the total cost 
constraint, elimination occurs because of condition 1.  Therefore this leg root, in which the first four 
variables are considered implemented, will be eliminated from further investigation entirely.  
Consequently, the next iteration considers the first three and the fifth variables implemented at a total 
cost of $1,898,000 which also exceeds the cost constraint again results in the elimination of a root. 
 
Iterations 6 and 7 continue trying the next possible combinations of variables without an optimal 
solution.  The solution in iteration 7 specifies the last leg and has a maximum value that is more 
beneficial than the stored solution and is therefore eliminated under condition 3.  This process continues 
until all leg roots have either been eliminated or accepted and the most beneficial solution that satisfies 
the cost constraint is selected.  Iteration 8 is selected as the optimal solution; it provides the largest 
maximum value for the imposed constraint. 
 
This example yields a solution that calls for implementing candidates X1, X2, X4, X5, and X6 with a 
maximum total increase in production revenue of $1,830,000 and a capital investment of $880,900 
(within the $1,000,000 cost constraint).  In this example 128 (27) potential candidate selections existed.  
However, through application of the IP algorithm, only fifteen needed to be identified for examination 
and those fifteen were examined fairly rapidly because of the building block nature of the process.
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Illustration of the Dynamic Programming (DP) Algorithm 
 
In the example presented in Appendix A, an optimal linear solution was found from 
evaluating seven candidates for a total capital cost of $880,900 which corresponds to a total revenue 
increase of $1,183,000.  Because the relationship between component and unit availability is usually non-
linear, a means of addressing those relationships and their affect on achieving an optimum solution is 
required.  The application of a DP algorithm is used to address this requirement.  This appendix illustrates 
how non-linear relationships can affect an optimal solution and demonstrates the use of the dynamic 
programming (DP) algorithm to address non-linear relationships that could impact the actual optimal 
solution.   
 
Non-linear Relationship Effect 
 
Figure B-1 can be used to illustrate how non-linear relationships can affect development of an optimal 
solution.  Figure B-1 shows the relationship between component A and the unit and component B and the 
unit.   Before any improvements are proposed, the relationships between the two components and the unit 
are depicted by the two curves and unit availability labeled as baseline.  If the availability of only component 
A is improved as indicated by the arrow labeled A, unit availability would increase to about 93% (dotted line), 
a change of 1%.  If the availability of only component B is improved as indicated by the arrow labeled B, unit 
availability would increase to about 95% (dashed line), a change of 3%.  If, however, component A and then 
component B are implemented in sequence, the following occurs: 

• Component A is improved and baseline availability moves to 93% 
• Since there is yet no improvement in B, the curve representing the relationship between component B 

and the unit will shift as shown and the unit availability corresponding to the unchanged component B 
availability moves from B1 to B2.  This occurs because the point at which the curve crosses the Y-axis 
does not change appreciably and the baseline availability of for component B does not change. 

•  Component B is now improved.   However, unit availability increases by 4% to 97%. 

 
Assume that the worth of improving availability by 1% is $1,000,000 ($20/MW-HR, 1000 MW unit). When the 
two components are considered independently, the benefit is equivalent to $4,000,000; when combined, the 
value is $5,000,000.  While not illustrated in Figure B-1, if component B is implemented and then component 
A, the increase is only about 3.8%. 
 
DP Algorithm 
 
The first step in the DP algorithm is to create a matrix such as the one shown in Table    B-1.  Each column 
in the matrix corresponds to linear Xk solution variable (X1, X2, X4, X5, X6 in the previous IP solution).  ICk

* on 
each column corresponds to CT-ICk (i.e., the cost constraint minus the implementation cost associated with 
the Kth candidate variable).  Vk

* corresponds to the IP solution of the reduced problem (i.e., excluding Xk) 
plus the actual  improvement expected from implementing Xk using the LCC simulation model.  Each column 
in the matrix corresponds to a reduced problem solution given that Xk is selected as an improvement.  
Variables included in the reduced problem solution are identified by ones and by zeros if they are not.  A 
zero is entered for Xk since it cannot enter the reduced solution as an improvement.  Variables included in 
the reduced problem solution are identified by ones and by zeros if they are not.  A zero is entered for Xk 
since it cannot enter the reduced solution. 
 
Each reduced problem is solved using the following steps: 
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Figure B-1.  Component/Unit Availability Non-linear Relationships 
  

Vk
*      

ICk
* $848,000 $638,000 $900,000 $770,000 $962,100 

Xk X1 X2 X4 X5 X6 
X1 0     
X2  0    
X3      
X4   0   
X5    0  
X6     0 
X7      

Table B-1.  Initial DP Matrix 
 
 

1. Candidate Xk is assumed to be implemented and the LCC simulation is executed to determine 
the expected change in MW-HR's associated with its implementation and to determine the 
criticality ranking of the remaining candidates.  If the set of criticality ranking values are 
unchanged from the original baseline ranking values, the reduced solution will be the same as 
the original IP solution and the solution can proceed to the next Xk and its reduced problem. 

2. A new set of ∆Ck’s (where Ck is the benefit associated with the Kth improvement) are determined 
by converting ∆MW-HR’s to ∆$’s.   At this point, because of non-linear effects, some of the 
variable candidates may drop out of the solution be cause the no longer supply a ∆Ck > 0 (or 
other selected minimum value > 0).  In this case zeros would be entered into the reduced 
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problem solution for the appropriate Xk’s. 
3. The IP algorithm is applied to the reduced problem, using ICk

* as the constraint and the solution 
is entered into the appropriate column. 

4. The value of Vk
* corresponding to the reduced problem solution value plus the value of 

implementation of the kth candidate is determined. 

After all the reduced problems have been solved, the column having the maximum Vk
* value is selected as 

the solution to the initial matrix.  This solution signifies that if only one candidate is to be implemented, the Xk 
that provided the solution is the optimum candidate. 
 
Table B-2 presents the solution to the initial matrix for this hypothetical case.  In this example, X2 is the 
variable selected and is considered to be implemented giving rise to the new reduced matrix illustrated in 
Table B-3.  (Note, since X2 is now considered selected, it no longer remains in the problem set.)   During this 
process, improvement candidates may drop out of the reduced solutions because they are no longer 
economically viable due to non-linear effects.  It is also possible that the variables previously screened out 
may enter into the reduced problem IP solution.  This is illustrated in Table B-2  where X3 entered the 
solution set even though it was not part of the original IP solution; X1 and X5 dropped out.  This process 
continues until either the capital constraint is met or all of the viable alternatives have been accepted.  
Tables B-4 though B-7 illustrate these steps for the remainder of the hypothetical problem.  In this example, 
the final solution is X2, X3, X4, and X6 with a capital cost of $976,900 and a total increase in revenue of 
$1,156,100.  The non-linearities caused the total increase in revenue to be $26,900 less than the initial IP 
solution predicted.  The algorithm was terminated by the cost constraint, i.e., all of the remaining options 
exceeded the remaining capital constraint, IC3

*. 
 
For those instances in which constraints are not exceeded or non-existent, the algorithm proceeds as 
described except the IP algorithm and constraints are not used.   The only criterion for acceptance of the 
improvements is that each improvement remains beneficial after another component is improved.  
 
 
 

Vk
* $1,086,300 $1,141,100 $1,103,400 $1,137,500 $1,139,250 

ICk
* $848,000 $638,000 $900,000 $770,000 $962,100 

Xk X1 X2 X4 X5 X6 
X1 0 0 1 1 1 
X2 1 0 1 1 1 
X3 0 1 0 0 0 
X4 1 1 0 1 1 
X5 1 0 1 0 1 
X6 1 1 1 1 0 
X7 0 0 0 0 0 

  Solution is X2  

Table B-2.  Initial DP Matrix Solution 

 
Vk

*    
ICk

* $161,00 $538,00 $600,100 
Xk X3 X4 X6 
X1    
X3 0   
X4  0  
X5    
X6   0 
X7    

Table B-3.  First Reduced DP Matrix 
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Vk
* $1,85,900 $1,259,600 $1,286,350 

ICk
* $161,00 $538,00 $600,100 

Xk X3 X4 X6 
X1 0 0 0 
X3 0 1 1 
X4 1 0 1 
X5 0 0 0 
X6 1 1 0 
X7 0 0 0 

    Solution is X4  

Table B-4.  First Reduced DP Matrix Solution 
 

Vk
*   

ICk
* $61,000 $500,100 

Xk X3 X6 
X1   
X3 0  
X5   
X6  0 
X7   

 

Table B-5.  Second Reduced DP Matrix 
 
 

Vk
* $1,115,050 $1,116,900 

ICk
* $61,000 $500,100 

Xk X3 X6 
X1 0 0 
X3 0 1 
X5 0 0 
X6 1 0 
X7 0 0 

    Solution is X6  

Table B-6.  Second Reduced DP Matrix 

 
 

Vk
* $432,000 

ICk
* $23,100 

Xk X3 
X1 0 
X3 0 
X5 0 
X7 0 

    Solution is X3: No other candidates remain  

Table B-7.  Final Reduced DP Matrix 
 


